是将来自高压电网的电能以不同的供电电压分配给各个电力用户,超声波传播到金属与缺陷的界面处时

新匍京娱乐场最全网站,新匍京娱乐场手机版,新匍京娱乐场app下载

是将来自高压电网的电能以不同的供电电压分配给各个电力用户,超声波传播到金属与缺陷的界面处时

| 0 comments

发布时间:15-01-15 17:57分类:技术文章 标签:X射线机,探伤仪
射线探伤设备简介
射线探伤常用的设备主要有X射线机、γ射线机等,它们的结构区别较大。 X射线机
X射线机的分类和用途
X射线机即X射线探伤机,按其结构形式分为携带式、移动式和固定式三种。携带式X射线机多采用组合式X射线发生器,体积小,重量轻,适用于施工现场和野外作业的工件探伤;移动式X射线机能在车间或实验室移动,适用于中、厚焊件的探伤;固定式X射线机则固定在确定的工作环境中靠移动焊件来完成探伤工作。
X射线管
X射线管是X射线机的核心部件,是由阴极、阳极和管套组成的真空电子器件,其结构如图1所示。
图1 X射线管结构示意图1:阴极; 2:聚焦罩; 3:灯丝; 4:阳极罩;
5:阳极靶; 6:管套
管套:它是X射线管的外壳。为了使高速电子在X射线管内运动时阻力减小,管内要求有较高的真空度。
阴极:X射线管的阴极起着发射电子和聚集电子的作用。它主要由发射电子的钨丝和聚焦电子的聚集罩(纯铁或纯镍制成的凹面形)组成。
阳极:X射线是从射线管的阳极发出的。整个阳极构造包括阳极靶(钨等)、阳极体和阳极罩(铜,导电和散热)三部分。由于X射线管能量转换率很低,阳极靶接受电子轰击的动能绝大部分转换为热能而被阳极吸收,因此阳极的冷却至关重要。目前采用的冷却方式主要有辐射散热及油、水冷却等。
焦点:X射线管的焦点是决定X射线管光学性能好坏的重要标志,焦点大小直接影响探伤灵敏度。技术指标中给出的焦点尺寸通常是有效焦点。因为影响透照清晰度和灵敏度的主要是有效焦点的大小。由于阳极靶块与射线束轴线一般成200倾斜角,所以有效焦点大约是实际焦点的1/3。
X射线机的组成X射线机通常由X射线管、高压发生器、控制装置、冷却器、机械装置和高压电缆等部件组成。携带式X射线机是将X射线管和高压发生器直接相连构成组合式X射线发生器,省去了高压电缆,并和冷却器一起组装成射线柜,为了携带方便一般也没有为支撑机器而设计的机械装置。
X射线机选择
根据工作条件选择:X射线机按其可搬动性分为携带式和移动式两大类。携带式轻便,易于搬动。移动式X射线机比较重,组件多,但管电压﹑管电流可以制作得较大,其线路结构和安全可靠性也较好。因此对于零件较小,可以集中在地面工作的,宜选用移动式X射线机。对于零件较大﹑需在高空或地下工作的,宜选用携带式X射线机。
根据被透物体的结构和厚度选择:X射线机是利用射线机透过被检验物质来发现其中是否有缺陷的。所以,首*关心的是X射线机能否穿透欲检验物质的材料或焊缝。X射线穿透能力取决于X射线的能量和波长。X射线管的管电压愈高,发射的X射线波长愈短,能量愈大,透过物质的能力愈强。因此,选择管电压高的X射线机可以得到高的穿透能力。
另外,X射线穿透过不同的物质时,物质对射线的衰减能力不同。一般来说,被透照物质原子序数愈大﹑密度愈大则对射线衰减的能力愈大。因此,透照轻金属或厚度较薄的工件时,宜选用管电压低的X射线机,透照重金属或厚度较大的工件时,宜选用管电压高的X射线机。
γ射线机
γ射线机按其结构形式分为携带式﹑移动式和爬行式三种。携带式γ射线机多采用60Co作射线源,用于较厚工件的探伤。爬行式γ射线机主要用于野外焊接管线的探伤。
γ射线机具有以下优点: •穿透力强,*厚可透照300mm钢材;
•透照过程中不用水和电,因而可在野外、对带电高压电器设备、高空、高温及水下等多种场合下工作,可在X射线机和加速器无法达到的狭小部位工作。
主要缺点是: •半衰期短的γ源更换频繁; •要求有严格的射线防护措施;
•探伤灵敏度略低于X射线机。 加速器
加速器是一种利用电磁场使带电粒子(如电子、质子、氘核、氦核及其他重离子)获得能量的装置。用于产生高能X射线的加速器主要有电子感应式、电子直线式和电子回旋式三种。目前应用*广大的电子直线加速器。
由于加速器能量高,射线焦点尺寸小,探伤灵敏度高,且其射线束能量、强度与方向均可精确控制,其应用已日益广泛。

发布时间:15-03-04 17:23分类:技术文章 标签:超声波检测 超声波的特点:
1、超声波声束能集中在特定的方向上,在介质中沿直线传播,具有良好的指向性。
2、超声波在介质中传播过程中,会发生衰减和散射。
3、超声波在异种介质的界面上将产生反射、折射和波型转换。利用这些特性,可以获得从缺陷界面反射回来的反射波,从而达到探测缺陷的目的。
4、超声波的能量比声波大得多。
5、超声波在固体中的传输损失很小,探测深度大,由于超声波在异质界面上会发生反射、折射等现象,尤其是不能通过气体固体界面。
如果金属中有气孔、裂纹、分层等缺陷(缺陷中有气体)或夹杂,超声波传播到金属与缺陷的界面处时,*会全部或部分反射。反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上*会显示处不同高度和有一定间距的波形。可以根据波形的变化特征判断缺陷在工件重的深度、位置和形状。超声波探伤优点是检测厚度大、灵敏度高、速度快、成本低、对人体无害,能对缺陷进行定位和定量。超声波探伤对缺陷的显示不直观,探伤技术难度大,容易受到主客观因素影响,以及探伤结果不便于保存,超声波检测对工作表面要求平滑,要求富有经验的检验人员才能辨别缺陷种类、适合于厚度较大的零件检验,使超声波探伤也具有其局限性。
超声波探伤仪的种类繁多,但脉冲反射式超声波探伤仪应用*广。一般在均匀材料中,缺陷的存在将造成材料不连续,这种不连续往往有造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的界面上会发生反射。反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。脉冲反射式超声波探伤仪*是根据这个原理设计的。
脉冲反射式超声波探伤仪大部分都是A扫描式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个工件中存在一个缺陷,由于缺陷的存在,造成了缺陷和材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后*会发生反射,反射回来的能量又被探头接收到,在显示器屏幕中横坐标的一定的位置*会显示出来一个反射波的波形,横坐标的这个位置*是缺陷波在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。
随着电子技术和软件的进一步发展,高端的超声探伤仪均已具有简单的手动及A、B扫描功能,能示意性地显示被检工件的断面图像。随着技术的进步,可在便携式仪器上实现相控阵的B扫描和C扫描成像,使探伤结果像医用B超一样直观可见,相信在不久的将来,以图像显示为主的探伤仪将会在工业检验中得到广泛应用。

发布时间:15-02-04 11:21分类:技术文章 标签:高压输电系统
电能从生产到消费一般要经过发电、输电、配电和用电四个环节。对于下图所示的简单电力系统而言,首*是发电环节,这个环节是在发电厂完成的。由于发电机绝缘条件的限制,发电机的*高电压一般在22kV及以下。其次是输电环节,输电系统是将发电厂发出的电能输送到消费电能的地区(也称负荷中心),或进行相邻电网之间的电能互送,使其形成互联电网或统一电网。为了降低线路的电能损耗、增大电能输送的距离,发电厂发出的电能通常需要通过升高电压才能接入不同电压等级的输电系统。第三是配电环节,配电系统*是将来自高压电网的电能以不同的供电电压分配给各个电力用户。*后是用电环节,电力用户根据不同的能量需求通常采用中、低压供电和消费。如下图所示,在电力系统中,需要多次采用升压或降压变压器对电压进行变换,也*是说在电力系统中采用了很多不同的电压等级。
图1简单电力系统示意图
输电系统的电压等级一般分为高压、超高压和特高压。在国际上,对于交流输电系统,通常把35~220kV的输电电压等级称为高压(HV),把330~750(765)kV的输电电压等级称为超高压(EHV),而把1000kV及以上的输电电压等级通称为特高压(UHV)。另外,一般把±500kV电压等级的直流输电系统称为高压直流输电系统(HVDC)。对我国目前绝大多数交流电网来说,高压电网指的是110kV和220kV电压等级的电网,超高压电网指的是330kV、500kV和750kV电压等级的电网,特高压电网指的是正在建设的1000kV交流电压等级和±800kV直流电压等级的输电系统。在同一个电网中采用了不同的电压等级,这些电压等级组成该电网的电压序列。目前,我国除了西北电网外,大部分电网的电压序列是500/220/110/35/10/0.38kV,西北电网的电压序列分别为750/330/110/35/10/0.38kV和220/110/35/10/0.38kV。电能送到负荷中心后经过地区变电站降压到10kV,然后再由10kV配电线路输送到配电变压器,*后经过配电变压器将电压变成0.38kV供电力用户使用。对于单相用户,其相电压*是民用220V交流电。输电系统之所以要采用这么多的电压等级,其原因主要有以下几点。
在1949年之前,我国电力工业发展缓慢,输电线路建设同样迟缓,输电电压按具体工程决定。因而,我国当时的电压等级繁多。1908~1943年,建成了22、33、44、66、110kV和154kV等电压等级的输电线路。1949年以后,才开始按电网发展规划统一电压等级,之后逐渐形成了经济合理的电压等级序列。每一个电压等级的建立都应以满足其投入后20~30年大功率电能的输送需求为基准。1981年以前,我国主要以220kV电压等级的电网为骨干网架。1981年以后,随着我国*条500kV交流输电系统(平武线)的建成,已经形成了以500kV电压等级为主要网架的超高压电网。目前,面临大规模、远距离输电以及*联网的需要,我国正在进行1000kV交流和±800kV直流特高压输电试验示范工程的建设,并建立了用于深入研究的特高压试验研究基地。
其次,学过物理的人们都知道,对于一个电阻系统,其电功率S计算公式为:S=U2/R。式中,U为施加在该电阻系统的电压,R为该电阻系统的等效电阻。根据上述公式,可以定性地看出,当电阻一定时输送功率与输电电压的平方成正比。如果输电电压提高1倍,输送功率将提高4倍。电网的发展历史表明,各国在选择更高一个电压等级时,通常使相邻两个输电电压之比等于2,多数是大于2。这样做可以使输电系统的输送功率提高4倍以上。从电网的发展过程看,输电电压等级大约也是以两倍的关系增长的。当发电量增至4倍左右时,即出现一个新的更高的电压等级。实践证明,以这样的电压等级差构成的电网才可能经济合理,并适应电网的发展和服务区域范围的扩大。
第三,不断增长的用电需求促进了火力、水力和核电等发电技术向单位(千瓦)造价低、效率高的大型、特大型发电机组方向发展,而可用于大规模发电的能源基地在地理分布以及社会经济发展的历史又形成了电源和电力负荷地理分布上的不平衡。在电力负荷中心地区,由于经济发展较快,导致用电需求增长也快,但是在这些地区却往往缺乏一次能源。而在一次能源丰富的地区,如矿物燃料、水力资源的地区,其经济发展相对较慢,用电增长相对较低或人均用电水平较低。这种一次能源分布和需求的不平衡情况增加了远距离、大容量输电和电网互联的需求。在电压等级不变的情况下,远距离输电意味着线路电能耗损的增加。因此,根据输电线路的长度不同,需要选择的电压等级也不同。当输送电能的功率给定后,提高输电线路的电压等级将降低输电线路的电流,从而减少有功功率和无功功率在输电线路上的电能损耗。另外,提高输电线路的电压等级不仅可以增大输电容量,而且降低输电系统的成本、增加输电线路的走廊利用率。但是,随着输电线路电压等级的提高,虽然输电线路的损耗减小了,可是相应的投资也随之增长。一般通过理论计算和一些经验数据来确定两者之间的*佳结合点,来*终决定输电线路的输电电压等级、*大输送功率和输送距离。下表中列出了现有不同输电线路电压等级与输送容量、输送距离的大致范围。
输电电压(kV) 输送容量(MW) 输送距离(km) 110 10~50 50~150 220
100~500 100~300 330 200~800 200~600 500 1000~1500 150~850 765
2000~2500 500以上 表1输电电压与输送容量、输送距离的范围
综上所述,尽管高压输电系统采用不同的电压等级有着多方面的原因,但是要遵循如下几条基本原则:①在遵守*电压标准、依照电网电压序列和考虑电网发展的前提下,选择有利于提高全电网经济效益的适当的电压等级;②要从全电网出发,权衡全电网的经济效益,而不是仅仅局限于某输电线路工程的经济效益;③要兼顾规模效益和时间效益。

相关文章

发表评论

Required fields are marked *.


网站地图xml地图